On Testing the Significance of Differences in Population Structures Based on Small Sample Sizes
DOI:
https://doi.org/10.15678/ZNUEK.2023.1001.0308Keywords:
statistical inference, permutation methods, comparing structures, indicator of structural similarityAbstract
Objective: This article examines the significance of differences in the structures of two or more populations. Various measures of structural similarity are presented in the literature, but no statistical tests are available to confirm the statistical significance of differences in the structures being investigated. The aim of the article is to propose a statistical test to confirm the existence of significant differences in structures based on data from contingency tables.
Research Design & Methods: Literature review. The statistical test proposed is based on the idea of Fisher’s exact test.
Findings: The test is applied to the results of original research on the participation of active internet portal users in cultural events before and during the COVID-19 pandemic.
Implications / Recommendations: The method allows for testing the significance of differences in the structures of two or more populations. Inference can be made based even on small size samples.
Contribution: Comparing structures in populations is common in economic research. The statistical test described herein contributes to knowledge on the indicator of structural similarity.
Downloads
References
Batóg B., Wawrzyniak K. (2018), Badanie dynamiki struktur przestrzennych dla wybranych zmiennych charakteryzujących rynek pracy w województwie zachodniopomorskim, „Studia i Prace WNEiZ”, vol. 54, https://doi.org/10.18276/sip.2018.54/1-04. DOI: https://doi.org/10.18276/sip.2018.54/1-04
Berry K., Johnston J.E., Mielke P.W. Jr. (2014), A Chronicle of Permutation Statistical Methods: 1920–2000, and Beyond, Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-02744-9
Domański C. (1979), Statystyczne testy nieparametryczne, PWE, Warszawa.
Fisher R.A. (1935), The Design of Experiments, Hafner Press, New York.
Good P. (2006), Resampling Methods: A Practical Guide to Data Analysis, 3rd ed., Birkhäuser, Boston.
Kończak G. (2016), Testy permutacyjne: Teoria i zastosowania, Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach, Katowice.
Kukuła K. (1986), Przegląd wybranych miar zgodności struktur, „Przegląd Statystyczny”, vol. 33(4).
Polko D., Kończak G. (2016), On Using Permutation Tests in the Data Homogeneity Analysis (w:) Knowledge–Economy–Society. Selected Challenges for Statistics in Contemporary Management Sciences, Foundation of the Cracow University of Economics, Cracow.
Rao C.R. (1973), Linear Statistical Inference and Its Application, 2d ed, Wiley, New York. DOI: https://doi.org/10.1002/9780470316436
Salsburg D. (2001), The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century, W.H. Freeman, New York.
Sheskin D. (2004), Handbook of Parametric and Nonparametric Statistical Procedures, 3rd ed., Chapman & Hall/CRC, Boca Raton. DOI: https://doi.org/10.1201/9781420036268
Sokołowski A. (1993), Propozycja testu podobieństwa struktur, „Przegląd Statystyczny”, vol. 40, nr 3–4.
Walesiak M. (1984), Pojęcie, klasyfikacja i wskaźniki podobieństwa struktur gospodarczych, „Prace Naukowe Akademii Ekonomicznej we Wrocławiu”, nr 285.
Yates F. (1934), Contingency Tables Involving Small Numbers and the χ2 Test, „Supplement to the Journal of the Royal Statistical Society”, vol. 1(2). DOI: https://doi.org/10.2307/2983604
Zeliaś A., Pawełek B., Wanat S. (2002), Metody statystyczne: Zadania i sprawdziany, PWE, Warszawa.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie / Cracow Review of Economics and Management
This work is licensed under a Creative Commons Attribution 4.0 International License.