The Analysis of the Dynamics of Economic Growth Models with Mathematica
DOI:
https://doi.org/10.15678/ZNUEK.2015.0940.0405Keywords:
Mathematica, differential equations, economic growth models, optimal controlAbstract
Differential equations and optimal control theory are the basic tools of the mathematical theory of economic growth. The aim of this paper is to show (using the example of the Mankiw-Romer-Weil and Lucas-Uzawa growth models) some capabilities of Mathematica in the symbolic and numerical solving of differential equations, calculating optimal values of integral functional (discounted lifetime utility) when only numerical optimal solutions are known, the symbolic differentiation of solutions given in terms of hypergeometric Gauss functions and the graphical presentation of solutions to differential equations.Downloads
References
Boucekkine R., Ruiz-Tamarit J.R. [2004], Special Functions for the Study of Economic Dynamics: The Case of the Lucas-Uzawa Model, „CORE Discussion Paper", No. 84, http://dx.doi.org/10.2139/ssrn.688904. DOI: https://doi.org/10.2139/ssrn.688904
Boucekkine R., Ruiz-Tamarit J.R. [2008], Special Functions for the Study of Economic Dynamics: The Case of the Lucas-Uzawa Model, „Journal of Mathematical Economics", vol. 44, http://dx.doi.org/10.1016/j.jmateco.2007.05.001. DOI: https://doi.org/10.1016/j.jmateco.2007.05.001
Korn G.A., Korn T.M. [1983], Matematyka dla pracowników naukowych i inżynierów, cz. 1, PWN, Warszawa.
Mankiw N.G., Romer D., Weil D.N. [1992], A Contribution to the Empirics of Economic Growth, „Quarterly Journal of Economics", vol. 107, http://dx.doi.org/10.2307/2118477. DOI: https://doi.org/10.2307/2118477
Tokarski T. [2011], Ekonomia matematyczna. Modele makroekonomiczne, PWE, Warszawa.
Zawadzki H. [2012], Atraktory w modelach równowagi i wzrostu gospodarczego, Placet, Warszawa.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Cracow Review of Economics and Management
This work is licensed under a Creative Commons Attribution 4.0 International License.