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Abstract 

 

A comparison of multidimensional populations is very interesting and common statistical 

problem. The most often way is to verify the hypothesis about the equality of mean vectors in two 

populations. The classic test for verification of this hypothesis is the Hotelling’s T
2
 test. Another solution 

is the use of simulation and randomization methods to study the significance of differences between the 

studied populations. Permutation tests are to enable statistical inference in situations where it is not 

possible to use classical parametric tests. These tests are supposed to provide comparable power to 

parametric tests with simultaneous reduction of assumptions, e.g. regarding the sample size taken or the 

distribution of the tested variable in the population. The article presents a permutational, complex 

procedure for assessing the overall ASL (achieved significance level) value. The applied nonparametric 

statistical inference procedure uses combining function. A simulation study was carried out to determine 

the size and power of the test under normality. A Monte Carlo simulation let to compare empirical power 

of this test with Hotelling’s T
2
 test power. The advantage of the proposed method is that the method can 

be used even when samples are taken from any type of continuous distributions in population.   
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1. Introduction 

 

Population comparisons most often involve comparison of characteristics in 

these populations. If it is assumed that population distributions differ only in the central 

tendency there are various parametric and nonparametric tests to verify this hypothesis. 

Many authors undertake to study both the power and size of tests for the significance of 

differences between means or medians in two or more populations using for this 
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purpose simulation methods based on bootstrap or permutation tests [Janssen and Pauls 

2005, Chang and Pal 2008, Kończak 2016, Anderson et al. 2017]. 

In a situation where the statistical test for certain measurable variables is 

conducted in several multidimensional populations the hypothesis about the equality of 

mean vectors in these populations may need to be verified. A special case is the study of 

differences in the means of variables XXX P,,,21   in two populations. The problem is 

to test the hypothesis about the equality of the mean vectors of P–dimensional random 

variable in the first and the second population respectively in the form of 

 210 : μμ H , (1) 

against alternative hypothesis  

 211 : μμ H . (2) 

The classic test for verification of this hypothesis (1) is the Hotelling’s T
2
 test. The 

method using the T
2 

test was proposed by Hotelling [1931, 1947] and Mahalanobis 

[1930, 1936] and is a generalization of the Student’s t test for many variables. For the 

test to be used the assumption is made that the samples were taken from a population 

with multidimensional normal distributions [Rencher 2002]. 

In the Hotelling’s T
2 

test two populations are considered from which two 

samples are taken independently from the distribution  11,ΣμPN  and from the 

distribution  22 ,ΣμPN .
 
Assuming that covariance matrices are unknown, but the same 

 ΣΣΣ  21  in order to verify the null hypothesis (1) on the equality of the mean 

vectors, the statistics can be used 
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If the H0 hypothesis is true, the statistics (3) has a Hotelling’s T
2 

distribution with P and 

121  nn  degrees of freedom, where P is the number of variables (dimensions) 

examined and 21 ,nn  are the sizes of samples taken form populations. It is also possible 

to determine the critical values for this statistics using statistics of form [Krzyśko 2009] 



3 

 
 

2

21

21

2

1
T

Pnn

Pnn
F




 , (4) 

which has a Snedecor’s F distribution of P and 121  Pnn  degrees of freedom. 

The Hotelling’s T
2 

test can only be used if the variables in each population have a 

multidimensional normal distribution. The article presents a method of testing the 

difference between two vectors of mean values that can be used also when the 

assumption regarding the occurrence of a multidimensional normal distribution in 

populations is not met. A simulation, randomization approach was proposed to 

investigate the significance of differences occurring between the studied populations. 

The method of solving the problem known from the literature and methods based on 

Monte Carlo simulations were compared. An approach was considered in accordance 

with the nonparametric statistical inference procedure using two-stage ASL (achieved 

significance level) determination. All simulations were carried out in the R statistical 

computing environment [R Core Team 2016]. 

 

2. Nonparametric combination procedures 

 

It is assumed that there are two samples 111

1 ,,,..., XXX Pp   and 222

1 ,,,..., XXX Pp   

independently taken from the population with distribution 1F  and 2F . These 

populations have continuous, P–dimensional distributions iF  for i 1, 2 with unknown 

parameters. The zero hypothesis is verified claiming that two samples were taken from 

populations with identical distributions in the form of    xFxFH 210 :  . Data taken 

from two populations can be noted [Marozzi 2008]. 
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where ij

p X  indicate the i–th  jni ,,1  sample for the p–th variable  Pp ,,1  in 

the j–th  2,1j  population and X
p

is combined sample for the p–th variable. 

The problem of testing equality of means in multidimensional populations can 

be considered in accordance with the Pesarin [2001] proposal. When the study deals 

with the problem of comparing the P means in two populations, partial P hypotheses are 

taken into account. The null hypothesis about the identity of the means vectors is in the 

form of 

 21

1

0 :  pp
P

p

H 


 , (5) 

against the alternative hypothesis 

 21

`1

1 :  pp
P

p

H 


 . (6) 

The study considered test statistics in the form of 

 21 XXT ppp  . (7) 

The decision was made using the empirical distribution of the test statistic obtained on 

the basis of permutation of the data set. A nonparametric, complex procedure was used 

to assess the overall ASL values. In the first stage of separate testing of each of the P 

partial hypotheses considered, the ASL values are determined in accordance with the 

traditional permutation method used during verification of the hypothesis for one-

dimensional data, i.e.: 

1. The significance level α is determined. 

2. The statistics values are calculated on the basis of the sample data ( 0Tp ). 

3. Perform the permutation of variables N–times then calculate the statistics test 

value ( kT ). 

4. Based on the empirical distribution of statistics the ASL value for each of the 

compared variables is estimated according to the formula 

  
 

1

5,0
ˆ 1

0

0
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



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k

p

k

p

p

Tp . 
(8) 

The method of permutation of multidimensional variables is shown in Figure 1. 
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Fig. 1. Scheme of permutations of variables 

Source: author’s own work. 

 

The second stage of the nonparametric statistical inference procedure involves the 

determination of the overall ASL value using combining functions [Pesarin 2001] 

  
TT pASLASLT ,...,1  .  

There are many forms of combining functions for determining the overall ASL value, 

however the authors the most often point to functions:  

 the Fisher omnibus combining function [Fisher 1932]  

    



P

p

pF TLSAC
1

ˆlog*2 , 

 the Liptak combining function [Liptak 1958]  

    


 
P

p

pL TLSAC
1

1 ˆ1 ,  

where   denotes the standard normal distribution function, 

 the Tippet combining function [Tippet 1931]  

      TLSATLSAC PT ˆ1,...,ˆ1max 1  . 
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The observed statistic value for the sample data using Fisher combining functions can 

be determined as 

   



P

p

p

T
TLSAT p

1

00
ˆlog*2 , (9) 

whereas the distribution of this statistic is determined on the basis of the same 

permutations as in the first step, for example for k–th permutation 
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
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ˆlog*2 . (10) 

The total ASL value for the test under consideration is estimated using the formula 
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(11) 

If ASL < α, the hypothesis H0 is rejected, otherwise there is no basis for rejecting the H0 

hypothesis. 

 

3. Monte Carlo simulation 

 

Considering the nonparametric procedure based on the Fisher combining 

function, the size and power of the test were estimated by simulation study. A Monte 

Carlo analysis was carried out allowing comparison of two populations with three-

dimensional normal distributions with parameters  0,0,01μ , 
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2Σ , where  1,1x  with the increment 0.2. In the 

simulations samples of sizes (n1,n2) = (10,10), (20,20), (30,30), (50,50), (100,100) were 

generated. The results of the simulations carried out to determine the size and power of 

the tests are presented in Table 1 (small sample sizes) and Table 2 (large sample sizes). 

For comparative purposes, the tables also include the results obtained for the parametric 

Hotelling’s T
2
 test and its permutation equivalent. The procedure for conducting each 
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test included 1000 Monte Carlo simulations and 1000 permutations of variables and the 

assumed level of significance was 05.0 . 

 

Table 1. Hotelling’s T
2
 test power and estimation of permutation tests power (small 

sample sizes) 

Test statistic 

x T
2
 T

2
 (perm) T  

(10,10) 

-1.0 0.828 0.829 0.900 

-0.8 0.632 0.628 0.701 

-0.6 0.381 0.387 0.440 

-0.4 0.187 0.193 0.199 

-0.2 0.079 0.079 0.083 

0 0.048 0.046 0.048 

0.2 0.075 0.077 0.076 

0.4 0.157 0.155 0.177 

0.6 0.389 0.385 0.447 

0.8 0.629 0.625 0.715 

1.0 0.846 0.843 0.902 

(20,20) 

-1.0 0.996 0.995 0.998 

-0.8 0.958 0.957 0.972 

-0.6 0.747 0.753 0.790 

-0.4 0.390 0.394 0.408 

-0.2 0.102 0.105 0.105 

0 0.045 0.043 0.045 

0.2 0.117 0.119 0.125 

0.4 0.373 0.380 0.401 

0.6 0.760 0.759 0.801 

0.8 0.947 0.948 0.963 

1.0 0.996 0.996 0.998 

(30,30) 

-1.0 1.000 1.000 1.000 

-0.8 0.998 0.997 0.998 

-0.6 0.913 0.911 0.927 

-0.4 0.548 0.556 0.586 

-0.2 0.158 0.160 0.170 

0 0.055 0.059 0.054 

0.2 0.160 0.160 0.170 

0.4 0.552 0.560 0.596 

0.6 0.916 0.917 0.943 

0.8 0.992 0.992 0.995 

1.0 1.000 1.000 1.000 

Source: computer simulations in the R program. 

 

In the case of the analysis of multidimensional, equinumerous samples, the sizes of the 

presented tests are close to the assumed level of significance. The values of estimated 

probabilities of rejecting the hypothesis H0, when it was true only slightly differed from 

05.0 . The three considered tests reached comparable assessments of the 
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Table 2. Hotelling’s T
2
 test power and estimation of permutation tests power (large 

sample sizes) 

Test statistic 

x T
2
 T

2
 (perm) T  

(50,50) 

-1.0 1.000 1.000 1.000 

-0.8 1.000 1.000 1.000 

-0.6 0.987 0.987 0.989 

-0.4 0.835 0.836 0.850 

-0.2 0.255 0.258 0.271 

0 0.045 0.049 0.048 

0.2 0.257 0.257 0.264 

0.4 0.805 0.805 0.825 

0.6 0.992 0.993 0.995 

0.8 1.000 1.000 1.000 

1.0 1.000 1.000 1.000 

(100,100) 

-1.0 1.000 1.000 1.000 

-0.8 1.000 1.000 1.000 

-0.6 1.000 1.000 1.000 

-0.4 0.997 0.997 0.997 

-0.2 0.528 0.528 0.536 

0 0.044 0.044 0.041 

0.2 0.520 0.528 0.535 

0.4 0.986 0.986 0.988 

0.6 1.000 1.000 1.000 

0.8 1.000 1.000 1.000 

1.0 1.000 1.000 1.000 

Source: computer simulations in the R program. 
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Fig.2. Graphs of the empirical power of the permutation test T for different sample sizes 

Source: author’s own work in the R program. 
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probabilities of rejecting the H0 hypothesis when it was false. In the majority of 

analyzed cases, however, the most powerful test was the proposed permutation test 

based on a two-stage ASL determination method using the Fisher combining function. 

The probabilities of recognizing differences between means vectors increased as the 

differences between the considered three-dimensional models of the populations 

increased. Analyzing the graphs of the empirical power of the permutation test 

depending on the sample sizes taken from the populations (Figure 2), it can be seen that 

for 10 observations the differences in means at level 1 are detected with a probability of 

around 90% by the permutation test. For samples with 50 observations, this probability 

was obtained for the difference in means of around 0.5. 

 

4. Conclusions 

 

The aim of simulation research was to determine the ability of presented 

permutation test to maintain the nominal probability of committing the type I error and 

the ability to obtain a high probability of rejecting a false zero hypothesis in the 

conditions of changing distribution parameters in populations from which samples were 

taken. Simulation tests to determine the size and power of tests were carried out using 

permutation tests.  

The tests that verify the hypothesis about the identity of distributions in the studied 

populations are presented. The results obtained in the simulation confirm the 

effectiveness of the method and the possibility of its application in order to infer 

differences between vectors of means in two populations with multidimensional normal 

distributions. All testing procedures (under normality) ensured control of type I error at 

the assumed level of significance. Higher power of presented tests was achieved thanks 

to the use of a nonparametric combination procedure that uses Fisher's combining 

functions to evaluate the overall ASL value. The advantage of the proposed method is 

that the method can be used even when samples are taken from any type of continuous 

distributions in population. 
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Abstract 

 

Permutacyjny test identyczności rozkładów w dwóch populacjach 

 

Porównanie populacji wielowymiarowych jest bardzo interesującym i często rozważanym 

problemem statystycznym. Najczęściej weryfikowana jest hipoteza o równości wektorów wartości 

średnich w dwóch populacjach. Klasycznym testem do weryfikacji tej hipotezy jest test T
2
 Hotellinga. 

Innym rozwiązaniem jest wykorzystanie metod symulacyjnych, randomizacyjnych do badania istotności 

różnic między badanymi populacjami. Testy permutacyjne mają umożliwić wnioskowanie statystyczne w 

sytuacjach, w których nie jest możliwe zastosowanie klasycznych testów parametrycznych. Testy te mają 
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zapewnić porównywalną moc do testów parametrycznych przy jednoczesnym ograniczeniu założeń, np. 

w odniesieniu do przyjętej wielkości próby lub rozkładu badanej zmiennej w populacji. W artykule 

przedstawiona zostanie permutacyjna, złożona procedura do oceny łącznej wartość ASL (achieved 

significance level). Zastosowana nieparametryczna procedura wnioskowania statystycznego wykorzystuje 

funkcje łączące (combining function).  Przeprowadzono badanie symulacyjne w celu określenia rozmiaru 

i mocy testu w warunkach normalności. Symulacja Monte Carlo pozwoliła porównać empiryczną moc 

tego testu z mocą testu T
2
 Hotellinga. Zaletą proponowanej metody jest to, że metoda może być 

stosowana, gdy próby są pobierane z dowolnego, ciągłego rozkładu w populacji. 

 

Słowa kluczowe: testy permutacyjne, porównanie populacji, moc testu, symulacja Monte Carlo, program 

R. 


